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Abstract. The minimal time function with constant dynamics is studied in the context of a Hilbert
space. A general formula for the subgradient is proven, and assumptions are identified in which the
minimal time function is lower C2.
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1. Introduction

Let X be a real Hilbert space, S⊆X be closed, and F ⊆X be closed, convex,
bounded, and with 0∈ intF . The results in this note characterize the proximal
subgradient of the value function TF

S �·� �X→ IR given by

TF
S �x� �=min

t�0

{
t �S∩
x+tF � �=∅}� (1)

One can view TF
S �·� as the minimal time function of a control system in which the

dynamic equation is ẋ�t�∈F with constant (i.e. independent of t and x) righthand
side F , and S is the target. An important and well-studied special case is F = IB,
where IB is the unit ball. Then TF

S �·� is the distance function dS�·�:
dS�x�= inf

s∈S
�x−s��

Our approach is to study TF
S �·� in analogy to dS�·�, and to pinpoint and analyze

the nature of nondifferentiability that arises near S in terms of the so-called F -
projection onto S, the latter being the set of points S∩
x+TF

S �x�F�.
We quickly review some recent work on minimal time problems related to our

results here. The minimal time function was first characterized as a solution to
a Hamilton–Jacobi equation by Bardi [1] using viscosity methods. Soravia [10]
extended these results to allow for noncontrollability and more general boundary
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conditions; see also [13] for a different approach based on invariance. Convexity
properties of the minimal time function were derived in [3], where an emphasis
was placed on global semiconcavity results; assumptions imposed there essentially
rule out “semiconvex” behavior which is our focus here. Global semiconvexity was
proven in [3], however, in the case of the target being convex and the dynamics
linear, and an analogy between the distance function and the minimal time function
was also drawn, an approach we are adopting here. Lipschitz estimates are given
also in Veliov [12]. Differentiability of minimal time functions related to properties
of the velocity set are contained in [2], where the target is taken as a single point.
The underlying state space in all of the aforementioned papers is IRn, whereas

differentiability properties of the distance function were characterized [5] in a Hil-
bert space. See also [8] for some additional refinements and localized results, and
[6] for related applications with an emphasis on the distinction between finite and
infinite dimensional spaces. The aim of the present paper is to extend some of these
results from the usual distance function to the case of a general F in the context of
a Hilbert space.
The plan of the paper is as follows. Section 2 contains a terse review of the

required background plus some preliminary results. The main result in Section 3
is a general formula for the proximal subgradient of TF

S �·� in terms of normal vec-
tors to its level sets. A similar propagation formula for general nonlinear systems
was proven by Soravia [11] in finite dimensions using contingent cone concepts
(Fréchet subgradients and normals); a proximal version in finite dimensions is
contained in [13], however the Hilbert space version given here is new. Section
4 contains a formula for the subgradient when S is convex, and Section 5 contains
some nonconvex results, and in particular, sufficient conditions for the lower C2

property in a neighborhood of S.

2. Preliminaries

This section reviews some of the concepts and basic tools to be used in the se-
quel. See [4] for a fuller development of nonsmooth analysis based on the prox-
imal concepts, and [9] for a somewhat different but exhaustive treatment in finite
dimensions.

2.1. BACKGROUND IN VARIATIONAL ANALYSIS

Suppose S⊆X is closed and s∈S. The proximal normal cone NS�s� to S at s is
the set of all � ∈X for which there exist �>0 such that


��s′−s����s′−s�2 ∀s′ ∈S�
If S is convex, then the proximal normal cone coincides with the normal cone of
convex analysis. In this case, there is no loss in generality by setting �=0.
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The corresponding function concept is the proximal subgradient, defined as
follows. Suppose f �X→�−���� is lower semicontinuous and proper, and
let epi f �= 
�x��� ∈ X × IR � � � f �x�� denote the epigraph of f . For
x ∈ dom f �= 
x ∈X � f �x�<��, the proximal subgradient �f �x� is (the pos-
sibly empty) subset of X defined as those � satisfying ���−1�∈Nepif

(
x�f �x�

)
.

A more user-friendly description of the proximal subgradient is given by (see [4])

�f �x�=

� � ∃� > 0� � � 0 so that f �y�� f �x�+
��y−x�−��y−x�2 ∀y ∈ x+�IB��

If f is convex, then �f �x� coincides with the subgradient of convex analysis. In
this case, the above description reduces to taking �=0 and �=�.

2.2. GAUGE FUNCTIONS AND POLARS

We assume throughout that a given set F ⊂X is closed, convex, bounded, and
with 0 ∈ int F . Recall that the (Minkowski) gauge function  F �X→ !0���
associated to F is defined by

 F ���=min
{
t�0 �

1
t
� ∈F

}
�

and the polar F � of F is the set

F � �=
� � 
��v��1∀v∈F��
The polar is always closed, convex, and with 0∈F �, and the closedness and
convexity of F imply the polar of F � is F , that is �F ���=F . We next further
review some elementary properties of  F �·�, which of course also hold for  F ��·�,
but are not explicitly stated. The proofs of these facts involve routine manipulations
of the definitions and are therefore omitted.
The gauge  F �·� is positively homogeneous ( F �rx�=r F �x� for all x∈X

and r�0) and subadditive ( F �x+y�� F �x�+ F �y� for all x and y), and
therefore is also convex. Since F is closed,  F �·� is lower semicontinuous. It is
clear that x∈F if and only if  F �x��1. Furthermore, the boundedness of F
is equivalent to 0 ∈ int F �, and hence F � satisfies the same assumptions being
imposed on F . Some further properties are included in the following proposition.

PROPOSITION 2.1.

(a) v ∈ bdry F if and only if  F �v�=1,
(b) For all � �=0 in X,

0< F ����=max
v∈F


��v�<��
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(c) Define �F� �= max
�v� � v ∈ F�, and similarly �F �� �= max
��� � � ∈
F ��. Then for all z∈X,

 F �z�

�F �� ��z���F� F �z�� (2)

Proof. (a) The “if” direction holds for any convex F with 0∈F , since  F �x�=1
implies �1+%�v�F for all %>0. For the “only if” direction, we prove the
contrapositive, and assume  F �v�� 0<1. Let %<

1− 0
max
 F �b′��b′∈IB� . Then for all

b∈ IB, we have

 F �v+%b�� F �v�+% F �b�� 0+
1− 0

max
 F �b′� �b′ ∈ IB� F �b�<1�

Therefore v+%IB⊆F , and so v�bdryF , and (a) is proven.
(b) Let � �=0. Now  F ����>0 since 0∈ intF �, and is finite since F is bounded.
The proof of (b) follows from the calculation

 F ����=min{t � 1
t
� ∈F �}=min{t �
��v�� t∀v∈F}=max

v∈F

��v��

(c) For any z∈X, we have by (b) that
 F �z��max

�∈F � ���z���F ���z��

which is equivalent to the first inequality. The second follows since z
 F �z�

∈F . �

Note (b) says that the Hamiltonian as defined in optimal control (see [4]) is
 F ��·�. The next proposition identifies the subgradient of  F �·�; the proof is an
exercise in convex analysis, see [7].

PROPOSITION 2.2. Suppose v∈X. Then

� F �v�=
{
� � F ����=1

}
∩NF

(
v

 F �v�

)
�

2.3. THE MINIMAL TIME FUNCTION

The minimal time function TF
S �·� �X→ !0��� was defined above in (1), but the

equivalent following description is far more useful:

TF
S �x�=min

s∈S
 F �s−x�� (3)

Note that the assumption 0∈ intF implies TF
S �x�<� for all x∈X, but the next

proposition says in fact TF
S �·� is Lipschitz. From the optimal control point of view,
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this is to be expected since the Petrov-type condition is known to characterize the
Lipschitz property for nonlinear finite-dimensional systems (see [3, 12, 13]), and
0 ∈ int F trivially implies the Petrov condition. The proof is straightforward, and
therefore omitted.

THEOREM 2.3. The minimal time function TF
S �·� is globally Lipschitz on X of

rank �F ��.

The level sets S�r� of TF
S �·� will play a significant role in our analysis, and are

defined by

S�r�={
y∈X �T F

S �y��r
}={

y∈X �
y+rF�∩S �=∅}� (4)

The following theorem contains the special versions of the so-called principle of
optimality that are pertinent here.

THEOREM 2.4. (Principle of Optimality). Suppose x�S.
(a) For all v ∈ F and t � 0,

TF
S �x−tv��TF

S �x�+t�

(b) Let S�r� be as in (4) with 0�r�TF
S �x�. Then

TF
S �x��r+min

z∈S�r�
 F �z−x��

Proof. (a). Let v ∈ F , t � 0, and % > 0. There exists s∈S so that  F �s−x�<
TF
S �x�+%. By subadditivity and positive homogeneity, we have

TF
S �x−tv�� F �s−x+tv�� F �s−x�+t F �v�<TF

S �x�+t+%�

Letting %↓0 proves (a).
(b). Let % > 0 and suppose 0 � r� TF

S �x�. There exist z ∈ S�r� and s ∈ S so that
 F �z−x�< min

z′∈S�r�
 F �z

′−x�+% and  F �s−z��r+%�

Therefore

TF
S �x�� F �s−z�+ F �z−x��r+ min

z′∈S�r�
 F �z

′−x�+2%�

and letting %↓0 proves (b). �

A variant of part (b) above is contained in the following corollary, which al-
though of some interest in itself, is needed in the general infinite dimensional
setting where the F -projection set S∩
x+TF

S �x�F� may be empty. If the latter
is nonempty, there are nonetheless always points s∈S that are suboptimal for the
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optimization problem (3) in the sense of (5) below. The content of the corollary is
that from a fixed x�S, any point z defined on a line originating from x through the
associated supoptimal velocity is suboptimal with the same error in the problem of
minimizing the F -distance from x to the level set containing z. The case %=0 is
also covered, and is the case where the suboptimal point is actually optimal.

COROLLARY 1. (A Principle of Suboptimality). Suppose x�S, %�0, and s∈
S satisfy

 F �s−x��TF
S �x�+%� (5)

Let v �= s−x
 F �s−x� ∈ F , and define zt �= x+ tv for t � 0. Now suppose 0�r�

TF
S �x� and t̄ satisfy T

F
S �zt̄�=r . Then

t̄� min
z∈S�r�

 F �z−x�+%� (6)

Proof. We have

r = min
s′∈S

 F �s
′−zt̄�� F �s−zt̄�

=  F

(
s−x− t̄

s−x

 F �s−x�

)
= F

([
 F �s−x�− t̄

] s−x

 F �s−x�

)

= inf
t′�0

{
t′ �

 F �s−x�− t̄

t′
s−x

 F �s−x�

}
� F �s−x�− t̄�

Thus by (5) we have t̄� F �s−x�−r�TF
S �x�−r+%, and the final conclu-

sion (6) follows from the previous Theorem, part (b), since it says TF
S �x�−r�

minz∈S�r� F �z−x�. �

3. General Formula for �T F
S �·�

The result in this section characterizes the proximal subgradient of TF
S �·� in general

terms. The formula has two features and can be naturally explained as follows: (1)
one feature is to be expected from vector calculus in that the gradient is normal to
the level set (although this is not true for general nonsmooth functions), and (2)
the other says that the gradient is scaled in a manner to satisfy the Hamilton-Jacobi
equation.

THEOREM 3.1. Suppose S is closed and F ⊂X is closed, convex, bounded, and
with 0∈ intF . Suppose x�S and TF

S �x�=r . Then

�T F
S �x�=NS�r��x�∩

{
� � F ��−��=1}�

where S�r� is as in (4).
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Proof. (⊆) Let � ∈�T F
S �x�, and so there exist positive constants � and � so that

TF
S �y��r+
��y−x�−��y−x�2 ∀y∈x+�IB� (7)

If y∈S�r�, then TF
S �y��r , and it immediately follows from (7) that


��y−x����y−x�2�
or that � ∈NP

S �r�.
We next show  F ��−���1. Let v∈F , and note by the principle of optimality

that y �=x−tv satisfies T�y��r+t for t�0. Substituting into (7) gives

t+r�TF
S �y��r+
��x−tv−x�−�x−tv−x�2=r+t
��−v�−t2�v�2�

Now divide by t>0 and let t↘0. Since v∈F is arbitrary, we conclude
 F ��−��=max

v∈F

−��v��1� (8)

Finally, we show there exists v̄∈F with 
��v̄��−1, which along with (8)
implies  F ��−��=1 as desired. For t>0, let s̄t∈S be so that  F �st−x��r+t2,
and let vt= st−x

 F �st−x� ∈F . Since F is weakly compact, there exists a sequence 
ti�i
with ti↘0 and vi �=vti converging weakly to some v̄ ∈ F as i→�. Now
consider yi �=x+tivi, and write si for sti . Observe that

1
t′
[
si−yi

]=  F �si−x�−ti
t′

[
si−x

 F �si−x�

]
�

and so the min value of t′ with 1
t′
[
si−yi

]
belonging to F must necessarily satisfy

t′� F �si−x�−ti. Therefore

TF
S �yi� = min
 F �s−yi� � s∈S��min
t′ �

1
t′
�si−yi�∈F�

�  F �si−x�−ti <r−ti+t2i

for all i. Clearly yi is within � of x for large i, and so the previous estimate can be
used in conjuction with (7) to obtain

r−ti+t2i > T F
S �yi��r+
��yi−x�−�yi−x�2

= r+ti
��vi�−t2i �vi�2�
Now divide by ti >0 and let i→�, and since vi→ v̄ weakly, the conclusion is


��v̄��−1� (9)

Hence  F ��−��=1 as asserted.
(⊇) Now suppose  F ��−��=1 and there exists � ′>0 so that


��z−x��� ′�z−x�2 ∀z∈S�r�� (10)
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We must show (7) holds for some choice of � and � . There are three possibilities
for a point y, which we shall consider separately: (i) TF

S �y�=r , (ii) TF
S �y�>r ,

and (iii) TF
S �y�<r .

(i) The case TF
S �y�=r is trivial, since (7) then reduces to (10) with �=� ′.

(ii) Suppose TF
S �y�>r and �y−x����1. There exists s∈S be such that

 F �s−y�<TF
S �y�+�y−x�2� (11)

Set v �= s−y
 F �s−y� , and choose t̄ so that zt �= y+tv satisfies TF

S �zt̄� = r . Since
t0=0 satisfies TF

S �zt0�=TF
S �y�>r and t1= F �s−y� satisfies TF

S �zt1�=0,
and therefore such a t̄ exists by the intermediate value theorem. We claim that

r+ t̄� F �s−y�� (12)

Indeed,

s−zt̄
t′

= 1
t′

[
s−y− t̄

s−y

 F �s−y�

]
=  F �s−y�− t̄

t′

[
s−y

 F �s−y�

]
�

and so s−zt̄
t′ ∈F whenever t′ = F �s−y�− t̄. It follows that

r=min
s′∈S

 F �s
′−zt̄�� F �s−zt̄�� F �s−y�− t̄�

which implies (12).
We now combine (11) and (12) to begin the following estimate

TF
S �y�+�y−x�2 > r+ t̄

� r+ t̄+
��zt̄−x�−� ′�zt̄−x�2 (13)

= r+ t̄+ t̄
��v�+
��y−x�−� ′�zt̄−x�2
� r+
��y−x�−� ′�zt̄−x�2� (14)

where we used (10) to deduce the inequality in (13) (which is valid for z=zt̄∈
S�r�), and the assumption  F ��−��=1 (which implies 
��v��−1) to deduce
the inequality in (14). It is only left to show that if � is chosen large enough, then
zt̄ and �

′ in (14) can be replaced by y and � . Therefore we are done by verifying
that

�zt̄−x��k�y−x� (15)

holds for some constant k that is independent of y.
The key to proving (15) involves an estimate of t̄ in terms of �y−x�. The

Principle of Suboptimality (Corollary 1, with %=�y−x�2) implies that
t̄ � min

z∈S�r�
 F �s−y�+�y−x�2

�  F �x−y�+�y−x�2 (since x∈S�r�)
� ��F ��+1��y−x�� (by (2) and �y−x��1)
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and thus
�zt̄−x� � �zt̄−y�+�y−x�= t̄�v�+�y−x�

�
{
��F ��+1��F�+1}�y−x�=�k�y−x��

Combining this estimate with (14) and (15) yields

TF
S �y��r+
��y−x�−��y−x�2

with � �=� ′k+1, and finishes the proof of (ii).
(iii) Assume now that TF

S �y�<r and y∈x+�IB, where ��= min
{
1�

1
4� ′�F� �1

16�F�2�� ′+���
}
. Let v̄∈F be such that


��v̄�=−1� (16)

and let zt �=y−tv̄. We claim that there exists t̄�0 so that

TF
S �zt̄�=r with t̄�k�y−x� (17)

for some constant k independent of y. To prove (17), note that zt∈S�r� for small
t, and so by the intermediate value theorem, t̄ exists with TF

S �zt̄�=r provided
there are t values with zt�S�r�. Now zt does not belong to S�r� if the proximal
inequality (10) is violated for z=zt, and we calculate

� ′�zt−x�2−
��zt−x�=
=�t2�v̄�2+2� ′t
y−x�v̄�+� ′�y−x�2−
��y−x�+t
��v̄�
=� ′�v̄�2t2+{

2� ′
y−x�v̄�−1}t+{
��y−x�2−
��y−x�}

=�at2+bt+c�

where we have used (16). Note that b� −1
2 since 2�

′
y−x�v̄��2��F��y−x�,
and that the above quadratic function in t has real roots since 4ac�4�F�2�� ′+
�����y−x�< 1

4�b2. Its smallest root is given by

t̂ �=−b−√
b2−4ac
2a

= 4ac

2a!−b+√
b2−4ac� � (18)

It follows that z �=zt for t slightly larger than t̂ is such that (10) is violated, and
consequently zt�S�r� for those t. Hence there exists t̄� t̂ so that TF

S �zt̄�=
r . We obtain the estimate in (17) of t̄ from (18): Since �x−y���, we have
−b = 1 − 2�
y−x�v̄� � 1 − 2��v̄�� � 1

2 . Thus it follows from (18) that
t̄ � t̂ � 4c � 4
� + �����y−x� =� k�y−x�, and thus (17) is valid as claimed.
We now return to proving (7). We have by the principle of optimality again that

TF
S �zt̄��TF

S �y�+ t̄�
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from which

TF
S �y��TF

S �zt̄�− t̄=r−
��−t̄v̄�
=r+
��y−x�−
��y− t̄v̄−x�=r+
��y−x�−
��zt̄−x� (19)

follows from (16). Now zt̄∈S�r� by (17), so by (10),

��zt̄−x��� ′�zt̄−x�2� (20)

Also, from the t̄-estimate in (17), we obtain

�zt̄−x���y−x�+ t̄�v̄��[
1+k�F�]�y−x�� (21)

Substituting (20) and (21) into (19) yields (7) with �=� ′�1+k�F��2. �

The following result is a corollary to the previous proof (see (9)), and will be
used below.

COROLLARY 2. Suppose x�S, s∈,F
S �x�, and−� ∈� F �s−x�. Then

〈
��

s−x

 F �s−x�

〉
=1�

4. The Case Where S is Convex

The case where S is convex can be completely described in a global manner. It is
convenient to have the following concept.

DEFINITION 4.1. Suppose S is convex, x̄�S, and s̄∈,F
S �x̄�. The S/F separ-

ating normal cone SEP�S/F�s̄�x̄� for �s̄�x̄� is defined by

SEP �S/F�s̄�x̄� �=NS�s̄�∩
{
−NF

(
s̄− x̄

 F �s̄− x̄�

)}
�

THEOREM 4.2. Suppose S is convex. Then

(a) TF
S �·� is convex on X;

(b) For each x∈X, the F -projection set,F
S �x� is not empty.

(c) For all x̄�S, the separating cone SEP�S/F�s̄�x̄� is independent of the
choice of s̄∈,F

S �x̄�; and
(d) The convex subgradient �T F

S �x̄� is given by

�T F
S �x� =

{
�

 F ��−�� � ∃s̄∈,
F
S �x̄�with� ∈SEP�S/F�s̄�x̄�

}

=
{

�

 F ��−�� � ∀s̄∈,
F
S �x̄�with� ∈SEP�S/F�s̄�x̄�

}
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The proof is omitted here due to lack of space, but details will be provided
elsewhere. The finite-dimensional version of the theorem can be derived from [9],
Theorem 10.13, page 433.

COROLLARY 3. Suppose S is convex and x�S. Then
�T F

S �x�=−� F �s−x�∩NS�s� ∀s∈,F
S �x��

In particular, the set −� F �s−x�∩NS�s� is nonempty and independent of s∈
,F

S �x�.

5. Results for Nonconvex S

We now consider conditions on F and nonconvex S for which TF
S �·� has some

regularity properties in a neighborhood of S. The following theorem says that one
inclusion of the equality in Corollary 3 holds for general closed sets S.

THEOREM 5.1. Suppose S ⊆ X is closed, x � S, and ,F
S �x� �= ∅. Then the

following inclusion holds:

�T F
S �x�⊆−� F �s−x�∩NS�s� ∀s∈,F

S �x��

Proof. The inclusion is trivial if �T F
S �x�=∅, so suppose � ∈�T F

S �x�, and set
r �=TF

S �x�. Recall Theorem 3.1, which says  F ��−��=1 and � ∈NS�r��x�.
By Proposition 2.2, it suffices to show

� ∈
[
−NF

(
s−x

 F �s−x�

)]
∩NS�s� ∀s∈,F

S �x�� (22)

Let s∈,F
S �x�, and set v̄ �= s−x

 F �s−x� . First note by Corollary 2 that 
−��v̄�=1.
Also, since  F ��−��=1, we have 
−��v��1 for all v∈F . Hence 
−��v− v̄��
0 ∀v∈F , and so � ∈−NF�v̄�.
We are left to showing that � ∈NS�s�, and are assuming there exists �>0 so

that


��y−x�<��y−x�2 ∀y∈S�r�� (23)

Let s′ ∈S, and note that y �=s′+x−s belongs to S�r� (since TF
S �y� �  F �s

′−
y�= F �s−x�=r). Since s′−y = s−x and y−x = s′−s, we have by (23)
that


��s′−s� = 
��s′−y�+
��y−x�+
��x−s�=
��y−x�
� ��y−x�2=��s′−s�2�

Hence � ∈NS�s�. �
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Our final goal is to identify hypotheses so that the opposite inclusion in The-
orem 5.1 holds, and thereby obtain regularity results for TF

S �·�. This is well-under-
stood for the case of F = IB, see [5], [8], [6]. A variety of equivalent conditions
were shown in [5] for the distance function to be C1 in a neighborhood of S, and
such sets were labeled proximally smooth. By Theorem 5.1, it is clear that if one
seeks �T F

S �x� �=∅ for x in a neighborhood of S, then S must have plentiful
proximal normal vectors, and proximal smoothness is precisely this. We use the
following as the definition of proximal smoothness: there exists �>0 so that for
all s∈S and � ∈NS�s�,


��s′−s����s′−s�2 ∀s′ ∈S� (24)

Notice that � is independent of s∈S. In addition to proximal smoothness, the
following theorem hypothesizes a sort of one-sided Lipschitz condition of the F -
projection map, and just as in the convex case, concludes that (22) holds as an
equality. However, it is still not clear if (25) always holds for S convex, although it
can be shown in some cases the projection map is singleton-valued and Lipschitz,
which then immediately implies (25).

THEOREM 5.2. Suppose x�S is such that for all there exist constants �>0,
k>0, so that

,F
S �y�⊆,F

S �x�+k�y−x�IB ∀y∈x+�IB� (25)

and that the set −� F �s−x� ∩ NS �s� is independent of s ∈ ,F
S �x�. Then one has

�T F
S �x�=−� F �s−x�∩NS�s�

for each s∈,F
S �x�.

Proof. The inclusion “⊆” is the result of Theorem 5.1. In view of Theorem 3.1 and
Proposition 2.2, the opposite inclusion “⊇” follows if it can be shown that[

−NF

(
s−x

 F �s−x�

)]
∩NS�s�⊆NS�r��x� (26)

for all s∈,F
S �x�, where r �=TF

S �x�. Note the left side of (26) is independent
of the particular s∈,F

S �x� since −� F �s−x�∩NS�s� is and the fact that these
sets differ only by scaling (Proposition 2.2). Thus it suffices to show there exists
s∈,F

S �x� so that (26) holds.
There exist constants k>0 and �>0, so that y∈x+�IB implies (25) holds,

and there exists �>0 so that (24) holds for all s∈S. Suppose � belongs to the left
side of (25) for some (and therefore all) s∈,F

S �x�. Now let y∈x+�IB∩NS�r��x�,
and select any s′ ∈,F

S �y�. By (24), there exists s∈,F
S �x� so that

�s′−s��k�y−x�� (27)
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Now we write


��y−x�=r

〈
−�� s

′−y

r
− s−x

r

〉
+
��s′−s�� (28)

and note that  F �s
′−y�=TF

S �y��r implies  F
(
s′−y
r

)
�1, or that s′−y

r
belongs

to F . Since −� ∈NF

(
s−x
r

)
, the first term on the righthand side of (28) is thus

nonpositive. The second term is bounded by ��s′−s�2 by (24), and so by (27) and
(28), we have


��y−x���k2�y−x�2�
This says � ∈NS�r��x� and finishes the proof of (26), and consequently of the
theorem. �

We conclude with a corollary concerning a sufficient condition for semiconvex-
ity (which is called lower C2 in [9], [5]) of TF

S �·� near S.

COROLLARY 4. Suppose S is proximally smooth, the F -projection ,F
S �x� of

each point x in an open neighborhood U of S is unique, and x �→,F
S �x� is

Lipschitz on U . Then �T F
S �x� �=∅ for all x∈U and TF

S �·� is lower C2 on U .

Acknowledgements

This work was partially supported by GNAMPA and PRIN “Analisi e controllo di
equazioni di evoluzione deterministiche e stocastiche.” P.R.W.’sworkwas partially
supported by NSF grant DMS-9972241.

References

1. Bardi, M. (1989), A boundary value problem for the minimal time problem, SIAM J. Control
and Optimization 27, 776–785.

2. Bressan, A. (1980), On two conjectures by Hájek, Funkc. Ekv. 23, 221–227.
3. Cannarsa, P. and Sinestrari, C, (1995), Convexity properties of the minimum time function,

Calculus of Variations 3, 273–298.
4. Clarke, F.H., Ledyaev, Yu.S., Stern, R.J. and Wolenski, P.R. (1998), Nonsmooth Analysis and

Control Theory, Springer, New York.
5. Clarke, F.H., Stern, R.J., and Wolenski, P.R. (1995), Proximal smoothness and the lower C2

property, Journal of Convex Analysis 2, 117–144.
6. Colombo, G. and Goncharov, V. (2001), Variational inequalities and regularity properties of
closed sets in Hilbert spaces, Journal of Convex Analysis 8, 197–221.

7. Ekeland, I. and Témam, R. (1999), Convex Analysis and Variational Problems, Classics in
Applied Mathematics, SIAM, Philadelphia.

8. Poliquin, R.A., Rockafellar, R.T. and Thibault, L. (2000),Local differentiability of distance
functions, Transactions of the American Mathematical Society 352, 5231–5249.

9. Rockafellar, R.T. and Wets, R.J-B. (1998), Variational Analysis, Springer, Berlin.



282 GIOVANNI COLOMBO – PETER R. WOLENSKI

10. Soravia, P. (1993), Discontinuous viscosity solutions to Dirichlet problems for Hamilton–
Jacobi equations with convex Hamiltonians, Communications Partial Differential Equations
18, 1493–1514.

11. Soravia, P. (1994), Generalized motion of a front propagating along its normal direction,
Nonlinear Analysis TMA 22, 1247–1262.

12. Veliov, V. (1997), Lipschitz continuity of the value function in optimal control, Journal of
Optimization Theory 94, 335–363.

13. Wolenski, P.R. and Yu, Z. (1998), Proximal analysis and the minimal time function, SIAM J.
Control Optim. 36, 1048–1072.


